STRUCTURES OF HYPERHOLOMORPHIC FUNCTIONS ON DUAL QUATERNION NUMBERS
نویسندگان
چکیده
منابع مشابه
Some Operations on Quaternion Numbers
(1) <(z1 · z2) = <(z2 · z1). (2) If z is a real number, then z + z3 = <(z) + <(z3) + =1(z3) · i+ =2(z3) · j + =3(z3) · k. (3) If z is a real number, then z − z3 = 〈<(z)−<(z3),−=1(z3),−=2(z3), −=3(z3)〉H. (4) If z is a real number, then z · z3 = 〈<(z) · <(z3),<(z) · =1(z3),<(z) · =2(z3),<(z) · =3(z3)〉H. (5) If z is a real number, then z · i = 〈0,<(z), 0, 0〉H. (6) If z is a real number, then z · j...
متن کاملSome Operations on Quaternion Numbers
In this article, we give some equality and basic theorems about quaternion numbers, and some special operations. the notation and terminology for this paper. In this paper z 1 , z 2 , z 3 , z 4 , z are quaternion numbers. The following propositions are true: (1) (z 1 · z 2) = (z 2 · z 1). (2) If z is a real number, then z + z 3 = (z) + (z 3) + 1 (z 3) · i + 2 (z 3) · j + 3 (z 3) · k. (4) If z i...
متن کاملON SOME STRUCTURES OF FUZZY NUMBERS
The operations in the set of fuzzy numbers are usually obtained bythe Zadeh extension principle. But these definitions can have some disadvantagesfor the applications both by an algebraic point of view and by practicalaspects. In fact the Zadeh multiplication is not distributive with respect tothe addition, the shape of fuzzy numbers is not preserved by multiplication,the indeterminateness of t...
متن کاملDual Quaternion
As we know, quaternions are very efficient for representing rotations with clear geometric meaning (rotation axis and angle) and only one redundancy. Unfortunately, they do not handle translations, which meanwhile can be made multiplicative along with rotations via the use of homogeneous coordinates. Despite also being 4-tuples, homogeneous coordinates are algebraically incompatible with quater...
متن کاملThe Quaternion Numbers
In this article, we define the set H of quaternion numbers as the set of all ordered sequences q = 〈x, y,w, z〉 where x,y,w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by x = R(q), y = I1(q), w = I2(q), z = I3(q). We define the addition, difference, multiplication again...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Honam Mathematical Journal
سال: 2013
ISSN: 1225-293X
DOI: 10.5831/hmj.2013.35.4.809